45,187 research outputs found

    A Total Fractional-Order Variation Model for Image Restoration with Non-homogeneous Boundary Conditions and its Numerical Solution

    Get PDF
    To overcome the weakness of a total variation based model for image restoration, various high order (typically second order) regularization models have been proposed and studied recently. In this paper we analyze and test a fractional-order derivative based total α\alpha-order variation model, which can outperform the currently popular high order regularization models. There exist several previous works using total α\alpha-order variations for image restoration; however first no analysis is done yet and second all tested formulations, differing from each other, utilize the zero Dirichlet boundary conditions which are not realistic (while non-zero boundary conditions violate definitions of fractional-order derivatives). This paper first reviews some results of fractional-order derivatives and then analyzes the theoretical properties of the proposed total α\alpha-order variational model rigorously. It then develops four algorithms for solving the variational problem, one based on the variational Split-Bregman idea and three based on direct solution of the discretise-optimization problem. Numerical experiments show that, in terms of restoration quality and solution efficiency, the proposed model can produce highly competitive results, for smooth images, to two established high order models: the mean curvature and the total generalized variation.Comment: 26 page

    Dublin City University at CLEF 2007: Cross-Language Speech Retrieval Experiments

    Get PDF
    The Dublin City University participation in the CLEF 2007 CL-SR English task concentrated primarily on issues of topic translation. Our retrieval system used the BM25F model and pseudo relevance feedback. Topics were translated into English using the Yahoo! BabelFish free online service combined with domain-specific translation lexicons gathered automatically from Wikipedia. We explored alternative topic translation methods using these resources. Our results indicate that extending machine translation tools using automatically generated domainspecific translation lexicons can provide improved CLIR effectiveness for this task

    Graph Scaling Cut with L1-Norm for Classification of Hyperspectral Images

    Full text link
    In this paper, we propose an L1 normalized graph based dimensionality reduction method for Hyperspectral images, called as L1-Scaling Cut (L1-SC). The underlying idea of this method is to generate the optimal projection matrix by retaining the original distribution of the data. Though L2-norm is generally preferred for computation, it is sensitive to noise and outliers. However, L1-norm is robust to them. Therefore, we obtain the optimal projection matrix by maximizing the ratio of between-class dispersion to within-class dispersion using L1-norm. Furthermore, an iterative algorithm is described to solve the optimization problem. The experimental results of the HSI classification confirm the effectiveness of the proposed L1-SC method on both noisy and noiseless data.Comment: European Signal Processing Conference 201
    corecore